Study of Legionella pneumophila treatment with copper in drinking water by single cell-ICP-MS

Published on 01/05/2024 | by Waterline Admin
Xu L, Sigler A, Chernatynskaya A, Rasmussen L, Lu J, Sahle-Demessie E, Westenberg D, Yang H, Shi H. Anal Bioanal Chem. 2023 Nov 14. doi: 10.1007/s00216-023-05033-7. Epub ahead of print. PMID: 37962610.
Highlights
  • This study, developed a highly sensitive single cell (SC)-ICP-MS method to monitor L. pneumophila cell concentration and track their uptake of Cu.
  • The SC-ICP-MS method showed excellent sensitivity, accuracy and precision in a drinking water matrix.
  • The cupric ions (Cu2+) treatment results indicated a dose-dependent trend, with 800-1200 µg/L reaching high disinfection rates in drinking water.
  • The investigation of percentages of viable and culturable, viable but nonculturable (VBNC), and lysed cells suggested there always were VBNC present at any Cu concentration.
  • Different Cu2+ treatment times further suggested that L. pneumophila cells developed an antimicrobial resistant mechanism with prolonged Cu exposure.

The paper can be sourced here.

 

Xu L, Sigler A, Chernatynskaya A, Rasmussen L, Lu J, Sahle-Demessie E, Westenberg D, Yang H, Shi H. Study of Legionella pneumophila treatment with copper in drinking water by single cell-ICP-MS. Anal Bioanal Chem. 2023 Nov 14. doi: 10.1007/s00216-023-05033-7. Epub ahead of print. PMID: 37962610.

Legionella pneumophila is a persistent opportunistic pathogen that poses a significant threat to domestic water systems. Previous studies suggest that copper (Cu) is an effective antimicrobial in water systems. A rapid and sensitive quantification method is desired to optimize the conditions of L. pneumophila treatment by Cu and to better understand the interaction mechanisms between Cu and cells. In this study, we developed a highly sensitive single cell (SC)-ICP-MS method to monitor L. pneumophila cell concentration and track their uptake of Cu. The SC-ICP-MS method showed excellent sensitivity (with a cell concentration detection limit of 1000 cells/mL), accuracy (good agreement with conventional hemocytometry method), and precision (relative standard deviation < 5%) in drinking water matrix. The cupric ions (Cu2+) treatment results indicated that the total L. pneumophila cell concentration, Cu mass per cell, colony-forming unit counting, and Cu concentration in supernatant all exhibited a dose-dependent trend, with 800-1200 µg/L reaching high disinfection rates in drinking water. The investigation of percentages of viable and culturable, viable but nonculturable (VBNC), and lysed cells suggested there always were VBNC present at any Cu concentration. Experimental results of different Cu2+ treatment times further suggested that L. pneumophila cells developed an antimicrobial resistant mechanism with the prolonged Cu exposure. This is the first quantification study on the interactions of Cu and L. pneumophila in drinking water using SC-ICP-MS.

Diary Dates & Events

Grime Scene

ANNOUNCING OUR NEW GRIME SCENE COMPETITION:

Following on from the successful Grime Scene competition, we have decided to continue the theme for another year, but with a twist. This year, we are asking for photographs of the grimiest pictures you can find accompanied with another photograph of how the ‘scene’ has been improved by your maintenance or cleaning.


We will display the photographs in each of the Waterline editions throughout 2024. The ‘most improved’ picture will be chosen by WMSoc members via an online vote. The winner will receive a £25 Amazon Gift Voucher after the Winter 2024/25 edition has been published.


Please send your photographs to:
waterline@wmsoc.org.uk.


Product & Service Spotlight

Introducing B & V Chemicals' new film forming amines for closed circuits and steam boilers.

Product Launch: Film forming amines.

This all-in-one solution offers low-dose, cost-effective treatment. Improves heat transfer efficiency by removing corrosion deposits, leading to cleaner surfaces. Enhances energy and resource efficiency by reducing Total Dissolved Solids (TDS). The stable film provided by polyamines ensures superior corrosion control, promoting longer equipment lifespan.

Plus - environmentally friendly, offering a greener alternative to traditional treatments.

Contact us on ownlabel@bvwater.co.uk for further information.

How the NEW SolidTek® Biocide Feeder Package will BENEFIT YOU

SolidTek® has launched its NEW Biocide Feeder which is functional, compact, and environmentally-friendly.

Designed for use with SolidTek’s® enhanced bromine biocide, BromTek, it offers multiple benefits:

SAFER
Reduced exposure to fumes and bromine dust (non-pressurised system).

EFFECTIVE
Use with field proven mixed hydantoin biocide - better performance than standard bromine tablets.

COMPACT
Wall mounted reducing footprint of installation.

QUICK & EASY
Charge with product in under 5 minutes without isolation from the system.
SUPPORT

Product calculators and tech support available.

Lovibond MD640 Photometer (PTSA & Fluorescein capable)

Product Spotlight Drop Test Kits

How many times have you heard … ‘we’re not sure what the system volume is’. A common problem which can be expensive - wasting chemical over dosing, or underdosing so the treatment is ineffective (i.e. shock dosing a biocide). The MD640 photometer has PTSA & Fluorescein capability built in. Simply use our System Checkers to add to an unknown system and read a PTSA or Fluorescein levels to accurately identify the system volume.

The Hydrosense PRO range

Hydrosense

The Hydrosense PRO range pioneers Legionella pneumophila detection, the cause of over 97% of Legionnaires’ disease outbreaks, by identifying all the serogroups 1-15 of this dangerous Legionella species. This easy-to-use, highly sensitive test uses unique filtration, offering a three-line test result that distinguishes between serogroup 1 and serogroups 2-15 within 25 minutes. The water test has a level of detection of 100 CFU/L and swab tests detect 200 CFU per swabbed area, providing crucial, rapid insights for water safety management.